

University of Verona

Dept of Neurological, Biomedical and Movement Sciences

MUSCLE ECCENTRIC TRAINING FOR ENDURANCE RUNNING PERFORMANCE

Cantor Tarperi¹, Luca Festa¹, Antonio La Torre², Federico Schena¹

 Dept of Neurological and Movement Sciences, University of Verona Centro per la Preparazione alla Maratona
Dept of Biomedical Sciences for Health, University of Milano

MSH 2015 - International Congress, 12-13 November 2015, Rovereto

Strategies to Improve Running Economy

Kyle R. Barnes · Andrew E. Kilding

[Beattie K, Sports Med. 2014]

[Gault and Willems, Aging Dis. 2013]

(3 t/w: 4 sets-4 rep.) + endurance tr.

[Støren O et Al. Med Sci Sports Exerc. 2008]

<u>6 weeks</u>

<u>MST</u>: (2 t/w: 4 sets - 4 rep.) + endurance tr.<u>RT</u>: (2 t/w: 3 sets - 10 rep.) + endurance tr.<u>CTRL</u>: only endurance tr.

Study	Subjects	EIMD	Muscle damage	VO ₂ max (%)	RE (%)
Paschalis et al. [10]	10 healthy males	120 eccentric actions	↑ CK, ↑ DOMS, and ↓ ROM, and ↓ strength	55 and 75	\checkmark
Burt et al. [12]	9 healthy men	100 squats at 80% body mass	√ CK, ↑ DOMS, and ↓ strength	90	↓ 4-5
Vassilis et al. [87]	24 young healthy men	120 eccentric actions	↑ CK, ↑ DOMS, ↓ strength	70	\checkmark
Scott et al. [88]	8 active men and 8 active women	3-4 × 10 repetitions of squat, lunges, step up and step down, and stiff-legged deadlift	↑ DOMS	70	\checkmark
	TABLE 2: Compari	ison of the effects of the de	ownhill running on runr	ing economy.	
Study	Subjects	EIMD	Muscle damage	VO ₂ max (%)	RE (%)
Chen et al. [11]	50 male students	30 min DHR at -15%	↑ CK, ↑ DOMS, ↓ strength, and ↑ LDH	70, 80, and 90	↓5
Hamill et al. [92]	10 recreational female runners	30 min DHR at -15%	↑CK, ↑DOMS	80	\checkmark
Braun and Dutto [93]	9 endurance trained men	30 min DHR at -10%	↑ DOMS	65, 75, and 85	↓3
Chen et al. [94]	10 soccer trained men	30 min DHR at -15%	↑ CK, ↑ DOMS, ↓ strength, and ↑ MB	65, 75, and 85	↓ 4-7

1

TABLE 1: Comparison of the effects of the resistance exercise on running economy.

[Assumpção et al. ScientificWorldJournal. 2013]

[Dufour et al. Med Sci Sports Exerc. 2004]

[Dufour et al. Med Sci Sports Exerc. 2004]

Compare the RE variation pre-post a regular endurance training program added to a **specific eccentric muscle efforts** (Yo-Yo Leg Press),

versus an low or high intensity training programs

Hypothesis:

in recreational runners, the eccentric strength program, added to a regular endurance training, could lead neuromuscular adaptations allowing benefits in RE

40-50 yy previous experiences for half marathon in last year

no pathologies no other sport

		n	Age	Height	Weight	V'O _{2max}
<u>Eccentric Strength</u> <u>Training</u>	EST	9	44.5± 6.0	169.0±9.1	71.3±9.4	48.8±5.1
<u>High Intensity</u> <u>Training</u>	HIT	9	42.2±8.6	171.2±6.8	70.9±11.9	50.3±3.7
<u>Low Intensity</u> <u>Training</u>	LIT	11	45.4±8.0	171.8±9.6	66.1±11.7	50.2±6.7

Bioenergetics & muscle

Gas exchange data analyser, Quarkb2, Cosmed IT

• V'O_{2max}; vV'O_{2max}; VT₁; VT₂; CE

Isocinetic LegPress, Technogym IT

• 1RM

DEXA, QDR Explorer W, Hologic, MA USA

- Fat Free Mass, (FFM, %FFM)
- Fat Mass, (FM, %FM)
- total body and arm/leg

Field performance

Vmax 2 – 10 – 21 km

HIT: 3 t/w sessions, running @ 95-140% of RV

EST: training characterized by 1 t/w 4set 7rep. on Yo-Yo Leg Press at maximal power + 3 t /w sessions, running @ 70-105% of RV

LIT: 3 t /w sessions, running @ 70-105% of RV

EST

RESULTS

RESULTS

IMPROVED EFFICIENCY IN EST

after 21 KM

LIT

RESULTS

Henderson et al. J Physion 2007

RESULTS

Ck [Δ%]

- > -5.3% in RE is in agreement with the previous studies
 - +12.5% in 1RM without hypertrophy is slightly lower than the results existing in literature
- a reduced cK at +6hh and +18hh after the effort

This results could be explain by neural adaptation such as:

An increased muscle activation

A better sinchronization of motor units recruitment (A greater efficiency in coordination intra/intermuscolar)

An increased α - motor neurons threshold

A decreased inhibition of Golgi's apparatus (Paavolainen 1999, Taipale 2013) And perhaps an implication of IGF-1 factor...

[Żebrowska A et Al. INT J SPORTS MED. 2013]

1 t/w of 4 sets of 7 rep. of ECCENTRIC EXERCISE is sufficient to improve RE and 1RM without muscle hypertrophy (and without injuries)

This training method, therefore, appears good for recreational runners in terms of:

✓ Facility of execution
✓ Safety
✓ Saved time

Prof. Federico Schena Prof. Antonio La Torre Dr. Luca Festa Dr. Kristina Skroce

CentroMaratona staff

Prof. Lippi Giuseppe Prof. Salvagno Gian Luca Clinical Biochemistry staff

> Dr. Chiara Milanese Dr.MF Piacentini